
 Modelling Project Coordination in a Multi-Agent Framework∗

F.M.T. Brazier, C.M. Jonker, J. Treur

Vrije Universiteit Amsterdam
Department of Mathematics and Computer Science

Artificial Intelligence Group
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Fax: +31.20.4447653 Email: {frances,jonker,treur}@cs.vu.nl

∗ Brazier, F.M.T., C.M. Jonker & J. Treur (1996). Modelling Project Coordination in a Multi-Agent Framework. In: Proceedings of the Fifth Workshops on
Enabling Technology for Colloborative Enterprises, WET ICE'96, IEEE Computer Society Press, 1996, pp. 148-155.

1 Introduction

Distributed project coordination requires insight in the types of
interaction involved in engineering practice. In current practice,
well-structured hierarchical management and decentralised project
organisation are often combined. Within an organisation, a number
of levels can be found within which responsibility for effective
interaction is delegated to the engineers themselves. Engineers
decide when to exchange preliminary ideas and partial designs,
when to acknowledge possible conflicts and when to resolve such
conflicts, when to question requirements, et cetera. A combination
of traditional management structures and virtual organisations
result in dynamic structures, liable to considerable change during
the life span of a project.

The types of interaction encountered in such real-life
engineering situations show how intricate such processes can be.
Within the multi-agent community the problem of distributed
problem solving has been recognised; see for example (Dunskus,
Grecu, Brown and Berker, 1995; Petrie, 1994). In (Jennings,
1995) an informal multi-agent model for cooperative problem
solving is proposed. Essential elements of this model are the
dynamic organisation and management of joint activities,
susceptive to change due to unexpected events. As described, the
model, however, does not provide enough detail to support
analysis, modelling and implementation of design coordination
systems in specific domains. To acquire a more precise description
of this model more detailed analysis is required.

In this paper a real-life design project is analysed for a situation
in which traditional management and virtual organisations are
combined: the design of part of the interior of a specific aircraft.
The DESIRE framework (Langevelde, Philipsen and Treur, 1992;
Brazier, Dunin-Keplicz, Jennings and Treur, 1995; Brazier, Treur,
Wijngaards and Willems, 1995, 1996) is used to model the
coordination of this cooperative distributed design project, using
Jennings' model as a frame of reference.

2 Distributed project coordination

Coordination of complex engineering projects often entails
coordination of individuals but also coordination of groups, often
somehow related to departments and/or project groups. These
entities, whether departments, project groups or individuals, may
be modelled as agents: each with their own responsibilities and
autonomy.

2.1 Coordination of engineering projects
Project coordination occurs at many levels: often groups of
managers interact on a regular basis, to evaluate the current
situation with respect to availability of resources (e.g., technology,
manpower, material, expertise), planning, integration, et cetera.
This holds for all phases of engineering: during the initial design of
a concept, feasibility studies, design definition, full scale
development, validation, et cetera. In essence, design entails
consideration and refinement of requirements, process coordination
and modification and refinement of a design object description (see
Brazier, Langen, Ruttkay, Treur (1994) for a generic model of
design), during each of these phases across disciplines. When and
how managers really interact, however, most often depends on the
design problems encountered, and on their willingness to
cooperate.

In this paper a simplified example of the coordination of a
routine design project is used for the purpose of illustration: the
design of aircraft interior. Agents refer to individuals (or groups of
individuals) with a specific task in the project. Requirements are
specified at the level of detail required for verification, including
specification of the verification procedures.

A design project manager is assigned the task of coordinating all
design activities for the interior of an aircraft, for example the
design of the toilet unit, luggage bins, wardrobe, gallies, side
panels, and the floors, often in close collaboration with the
financial department. The responsibility for the design of each of
the individual units is delegated to a unit manager, who in turn
coordinates the design of more specific aspects of that unit. The
design project manager interacts with a number of specialists:
financial specialists, styling specialists, logistic specialists, tooling
specialists, et cetera, to coordinate the project as a whole. At this
level, coordination is clearly hierarchically organised. Although
relatively well-defined, the frequency and content of interaction and
cooperation is not as easily specified.

Detailed design at the level of one of the units, however, will be
used to illustrate the value of our approach. The unit manager
considered receives requirements for the aircraft as a whole,
together with technical specifications for a specific unit, in our
example the toilet unit. He/she is responsible for the integrated
design of the unit, but also for interaction with other unit managers
and the project manager, in particular with respect to control and
configuration management. The unit manager coordinates detailed
design of the unit: he/she examines (partial) designs produced by
design engineers, electrical engineers, and systems engineers,
identifies inconsistencies, and interacts with the
designers/engineers to find solutions. The unit manager is
responsible for the provision of information within his/her unit
group: the most recent version of the integrated design, relevant
guidelines and decisions taken within the project management
group, et cetera.

The engineers, in turn, coordinate their own design processes.
Design engineers, for example, interact not only with electrical
engineers and systems engineers, but also with other experts, such
as product specialists, purchasing department, tooling specialists
and styling specialists, when necessary. When and how other
specialists are involved, is left up to the discretion of the individual
engineers: they themselves 'defend' virtual organisations

For the sake of simplicity, the above example of design will be
modelled for one unit, with one engineer of each signature. These
engineers will most often represent a group of engineers
responsible for the tasks assigned in this model. The patterns of
communication between engineers are, however, comparable.

2.2 Design process
Four main activities can be distinguished within this design
process: verification, product design, product selection and product
definition. The sequence of product design, selection, and
definition is, in principle, an iterative process. Verification
requirements imposed on the unit (both generic and specific) are
analysed and translated into verification means, methods and tools
for specific elements of the design product and/or production
process during product design.

Product design entails design of (1) the design product, and (2)
the production process: alternative products and processes are
proposed and analysed. The sequence within which parts of the
product and parts of the production process are considered,
depends largely on expectations with respect to time needed to
acquire materials, and to design and manufacture tooling. One of
the main requirements on the design process is to make information

2

on both of these aspects available (tooling and supplies) as soon as
possible.

Product selection involves interaction with one or more
designers/engineers, and specialists depending on the level of detail
involved, both for the design product and the production process.
Factors such as intricacy of manufacturing process, cost,
maintainability, standardisation, weight, are of importance in this
phase. Product definition defines the design of the product and the
production process at the level of detail required for manufacturing.
Effect and efficiency are examined, in particular for recurring
processes within the production process, and for recurring parts.

3 Specification of Multi-Agent Systems

In projects such as the design project sketched above task
coordination between agents is essential. As agents, however,
often perform more than one task, (sequentially or in parallel), task
coordination within the agents themselves is also of importance.
Within the formal compositional framework DESIRE (Langevelde,
Philipsen and Treur, 1992; Brazier, Treur, Wijngaards and
Willems, 1995; Brazier, Dunin-Keplicz, Jennings and Treur,
1995, 1996) task models are used to define compositional
architectures. Task models include knowledge of

(1) a task (de)composition,
(2) information exchange,
(3) sequencing of (sub)tasks,
(4) sub-task delegation, and
(5) knowledge structures,

These five types of knowledge are explicitly modelled and
specified at different levels of abstraction. Tasks are defined at
different levels of abstraction, resulting in a task (de)composition.
Different levels of abstraction are distinguished within knowledge
structures; for example taxonomies of information types. Tasks
refer to these knowledge structures. Sequencing of tasks and
goals, and information exchange reflect the abstraction level of
tasks involved. Task delegation, the last of the five types of
knowledge, is also defined at all levels of abstraction within a task
model. More abstract tasks may be delegated to more than one
party, whereas more specific tasks are often delegated to one
particular party.

The model of cooperation presented in this paper has been
formally specified within the DESIRE framework. The semantics
of the formal specification language are well-defined, based on
temporal logic; see (Brazier, Treur, Wijngaards and Willems,
1996). By explicitly modelling and specifying the semantics of
static and dynamic aspects of a system, a well-defined conceptual
description is acquired that can be used for verification and
validation, but also is a basis for reuse. Translation to an
operational system is straightforward; the framework, in fact,
includes implementation generators with which formal
specifications can be translated into executable code. DESIRE has
been successfully applied to design and develop both single agent
and multi-agent systems (Brazier and Treur, 1994; Brazier, Dunin-
Keplicz, Jennings and Treur, 1995; Dunin-Keplicz and Treur,
1995).

4 A Model of Cooperation

To successfully develop a support system for cooperation in a
complex, dynamic and not always predictable environment, a well-
defined and transparent model of cooperation is required: a model
that is robust and flexible enough to cope with unexpected events.
To this aim in (Jennings, 1995) a model for cooperative problem
solving using joint intentions was introduced, based on experience
in industrial applications. The model describes both the phase of
setting up (organising) a joint project and the phase of performing
the joint project, including the management of unexpected
difficulties. In (Jennings, 1995) details of this model are described
for an implementation in one specific environment. This limits
possibilities for reuse of the model. In this section, the cooperation
model is described in terms of specifications at the conceptual level
in the compositional framework DESIRE. For detailed
specifications see (Brazier, Jonker and Treur, 1996).

In Jennings' model of cooperation agents are capable of
organising projects. An agent decides to organise a project to reach
a given goal (in the example of Section 2, the goal of the design
project organised by the design manager (DPM) is to design the
interior of the aircraft, in particular the design of the toilet unit).
With respect to the current state of the world, an agent determines a
set of activities to reach this goal and the temporal dependencies
between the activities. The DPM, for instance, considers
dependencies between activities such as coordination, design of the
construction, design of electrical systems, design of other systems,
styling, and tooling. The organising agent then identifies other
agents capable of performing the activities (a unit manager UM, a
design engineer DE, an electrical engineer EE, a systems engineer
SE, a styling specialist SS, a tooling expert T, et cetera). In
interaction with these agents, the organising agent determines
which agents are willing and able to participate in the project. On
the basis of this information, the activities to be performed, the
order in which the activities are to be performed and the deadline,
the organising agent tries to put together a project team and a
project schedule (called a recipe). The creation of this recipe is an
iterative process requiring interaction with the other agents on their
own schedules (related to other projects). When completed, the
recipe is sent to all participants, and the project commences.

Once committed, each participating agent (including the
organiser) receives the final recipe, and is committed to the relevant
time interval in the recipe. Each agent has the same obligation
towards the project: each member monitors the progress of the
project and is equally responsible for its success. If a team-member
discovers a problem that endangers the project, he/she informs all
participants. One of the agents (e.g., the project manager) can then
take the initiative to modify the project plan, to create a new project
for the same goal or to inform all participants that the goal is
unattainable or that it is no longer necessary to reach the goal.

In Figure 1 a hierarchical task decomposition for a cooperative
agent is depicted. In Sections 4.1 to 4.8 the components that
correspond to tasks in the hierarchy are described in more detail.

maintain historiy

agent specific tasks

maintain agent
information retrieve capabilities information

update agent information

maintain world information

agent interaction management

prepare action execution

prepare observation execution

distribute observation information

world interaction
management

own process control

determine goals and commitments

assess information

evaluate own processes

plan and schedule

maintain own activities

cooperation
management

prepare pro ject commitments

generate and modify pro ject recipe
generate
project

monitor
project determine consequences

assess viability

Figure 1 Task hierarchy for a generic agent
A cooperative agent performs a number of generic tasks. Some of
these tasks deal with the relationship of an agent to the world:
maintaining information about the world (world model), and
managing interaction with the world (observation, execution of
actions that change the world). Other tasks concern its relationship
to other agents: maintaining information on other agents (agent
models), managing interaction with other agents (communication),
and managing activities performed jointly with other agents
(cooperation). Furthermore, tasks of a more reflective nature are

3

performed: maintaining information of an agent's own processes
over time (history), and managing an agent's own processes (own
process control). In addition to these generic tasks, agent specific
tasks are distinguished: tasks that may differ between agents (agent
specific tasks). A graphical representation of these tasks is shown
in Figure 1.

Each of the tasks depicted in Figure 1 can be described in more
detail. The eight components responsible for the tasks
agent_specific_tasks, own_process_control, maintain_history, agent_
interaction_management, maintain_agent_information, cooperation_
management, world_interaction_management, and maintain_world_
information are presented below.

4.1 Agent Specific Tasks (AST)
AST is a composed component that is mostly domain-specific and
that may differ per agent. It contains a task-hierarchy and
knowledge necessary to perform tasks in interaction with other
components of the same agent.

4.2 Own Process Control (OPC)
The agent component OPC is a composed component responsible
for determining, planning, scheduling and monitoring an agent's
activities. Furthermore, it is responsible for maintaining all relevant
information on the agent's activities and its status. These sub-tasks
are performed by OPC's sub-components:
determine_goals_and_commitments (DPC), assess_ information (AI),
evaluate_own_processes (EOP), plan_and_schedule (PS) and
maintain_own_activities (MOA).

4.2.1 Determine Goals and Commitments (DGC)
DGC determines goals of an agent on the basis of its motivations,
priorities, and deadlines and its role within a system. Selection of a
goal depends on motivation: motivation is a necessary precondition
for goal selection. Selection of a goal implies individual
commitment to the goal.

4.2.2 Assess Information (AI)
The AI component maintains all relevant information on an agent's
activities: which information is based on its own observations;
which on own assumptions; which has been received by
communication, and from which source; and which information
has been derived, and is based on which other information.

4.2.3 Evaluate Own Processes (EOP)
This component is responsible for the evaluation of the progress of
an agent's activities with respect to its individual commitments. It
involves monitoring relevant activities (its own and other agents)
and analysing monitoring information. During analysis EOP may,
for example, deduce that the motivation for a goal has disappeared:
this goal is then removed.

4.2.4 Plan and Schedule (PS)
The component PS is responsible for planning and scheduling an
agent's activities, upon request for participation in a project by
another agent or on the basis of information received from EOP or
DGC. The component PS uses domain-knowledge to find a set A
of activities, called a plan, that meets the following criteria: (1)
execution of the plan will lead to the fullfilment of a goal G, (2) the
plan can be scheduled without contradicting prior commitments,
(3) the plan matches the priority and the deadline of the goal. If no
such plan and schedule can be found, not even by requesting the
help of other agents, this must be communicated to EOP. Another
goal can then be selected by DGC. If an agent cannot reach the goal
G itself while respecting the priority and deadline, but the goal may
possibly be reached with the help of others, then all relevant
information is sent to CM, which will try to create a project to
reach the goal.

4.2.5 Maintain Own Activities (MOA)
This component stores an agent's own schedule, which actions an
agent can perform (domain dependent) and which commitments an
agent has made to which goals. Commitments can be made with
respect to other agents and projects.

4.3 Maintain History (MH)
The component MH is responsible for the storage of the sequences
of internal and external processes of an agent, for which purposes
and with which results. Upon request, part of this information can

be sent to other components or agents. Information of this kind is
useful in strategic reasoning. For example, if a goal can be reached
via different recipes and one of these recipes has previously been
attempted and failed, another recipe should be attempted.

4.4 Agent Interaction Management (AIM)
The component AIM manages communication with other agents, in
particular with team members of a project. It receives information
from CM which it transfers to (possible) participants in a project.
Furthermore, it receives (communicated) information from other
agents which it transfers to other relevant components. For
example, upon receiving a new recipe, AIM determines the subset
of recipe-elements that concern its own activities. This subset is
passed on as "own process" information to OPC. The whole recipe
is sent to CM.

4.5 Maintain Agent Information (MAI)
Upon request MAI provides other agents or other sub-components
with names of agents capable of performing certain specified
activities. Two sub-components are responsible for the
performance of this task: update_agent_information (UAI) and
retrieve_capabilities_information (RCI).

4.5.1 Update Agent Information (UAI)
UAI maintains models of other agents known to an agent itself. A
model of another agent consists of statements that express
cooperativeness of the other agent, its availability (that it normally
has no time to help other agents, or normally is able to help),
punctuality with respect to deadlines, et cetera. UAI stores and
updates its knowledge by maintaining which activities other agents
are capable of performing, the projects in which they participate
and the goals to which they are committed.

4.5.2 Retrieve Capabilities Information (RCI)
RCI provides, for each activity, the names of all agents known to
be capable of performing an activity and the available meta-
information concerning the exhaustiveness of the information.

4.6 Cooperation Management (CM)
The component CM is a composed component responsible for all
tasks concerning projects, project commitments and cooperation.

4.6.1 Generate Project (GP)
Given the goal G, motivation M, priority p, deadline T, all possible
sets A of activities with which goal G can be reached, and an
agent's own capabilities, the component GP has two main tasks: to
prepare project commitments, and to generate and modify project
recipes.

The component Prepare Project Commitments (PPC)
determines a preferred set A of activities with which goal G can be
reached. Using domain-knowledge the dependencies between the
activities in A are determined using critical path methods. This
(partial) ordering of the activities in A is important in the
development of a recipe R for goal G. Given this dependency-
graph PPC determines which agents can and are willing to perform
activities to help reach goal G. The dependency-graph for A, the
information (G, M, p, T), the relevant capabilities of the willing
participants (including the agent's own relevant capabilities) and
the corresponding names of the agents, are sent to GMR.

Using PPC's information, the component Generate and
Modify project Recipe (GMR) designs a recipe R that
conforms to the interdependencies between the activities in A (thus
leading to G's fulfilment). The recipe R is interactively designed by
iteratively generating and sending proposed recipe elements to
agents interested in participation. A recipe element consists of a
task of A, a willing participant capable of performing that task, a
priority p and a deadline T for that task. The willing participants
accept, adapt or reject the proposed recipe elements. Acceptance or
adaptation of a recipe element implies that the agent commits itself
to this element. GMR adjusts the partial recipe depending on the
replies from participating agents. A recipe may be found that is
acceptable to all participants and that will reach goal G before its
deadline. The duration of the recipe and team building is estimated
on the basis of the number of activities involved, the number of
willing participants and the time needed for communicating
requests and responses. The time required for communication
(depending on the situation) is assumed to be known. In addition,

4

communication is assumed to be error free. The resulting recipe is
communicated to all participants.

4.6.2 Monitor Project (MP)
The component MP is responsible for the detection of the need for
alterations to the project or the need to stop the project. MP
monitors the progress of the project. In order to perform its task
MP has two sub-components: assess_viability and
determine_consequences.

Assess Viability (AV) monitors the viability and validity of the
recipe. To check the validity of the project recipe, AV uses the
same considerations as the sub-component evaluate_own_processes of
the component own_process_control. To monitor the process it uses
information received from OPC, WIM and MWI (its other
components). It can also actively formulate requests for
observational information from WIM, MWI or information of other
agents via MAI and AIM.

Determine Consequences (DC) interprets AV's monitoring
results. The component DC issues requests to find new recipes or
to adapt existing recipes, to the component project_generation of CM
and issues corresponding messages to the participants. DC also
determines when a goal G should be withdrawn (for example,
because the goal is unattainable, the goal has been reached, or
because the motivation for the goal no longer exists) and prepares
and issues a message to that effect to each participant.

4.7 Maintain World Information (MWI)
MWI contains the current world state as known to the agent. MWI
stores all information obtained by monitoring the world (also the
material aspects of all agents including the agent itself).

4.8 World Interaction Management (WIM)
The component WIM is responsible for the execution of
observations and actions. An important sub-task of this component
is the observation of the effects on the world of the tasks executed
by the other agents and by the agent itself.

4.8.1 Prepare Action Execution (PAE)
This component prepares the execution of actions determined by
AST by communicating to the world which actions should be
taken.

4.8.2 Prepare Observation Execution (POE)
WIM prepares specific observations. The observational
information is sent via DOI to those sub-components that analyse
this information.

4.8.3 Distribute Observation Information (DOI)
Upon request, observational information is sent from DOI to other
components (including MWI). DOI can also take the initiative to
inform other components (including MWI) of (domain-dependent)
important changes in the world.

5 Communication between agents

Interaction between agents is modelled by information links,
controlled by the agent from which the links originate. Different
types of information are exchanged through links: both object level
information, such as information on the design object description,
the initial cable routing, switch dimensions and positions, the initial
design, product information, and meta-level information; i.e.,
requests for information, evaluation information on the design
object description, conflicts between routing of cables and the
initial design, and information on the design process (e.g.,
planning and scheduling). The double-arrowed lines in Figures 2
and 3 depict the information links that specify the exchange of
these types of information between agents.

To describe the interaction between agents two scenarios will be
sketched. First the creation of a project is sketched from the
perspective of a design project manager in Section 5.1. A system
trace is presented for the creation process, sketching the activation
of agents, components of agents and the information
communicated through time. As an example of project execution,

the design of a unit is described from the perspective of a design
engineer in Section 5.2, part of which is presented in a system
trace.

5.1 Communication during project creation
In this section a scenario for project creation is described. The
communication patterns are depicted in Figure 2. A trace of a
process of project formation is shown in Table 4.

DPM

DE

UM

EF SE
DE

UM

EF SE

Figure 2 Communication during project creation

Project creation scenario
The component OPC of the design project manager (DPM) has the
goal to design an aircraft (1). To reach this goal, DPM needs help.
Thus, his component GP (part of CM) is activated to generate the
project. Immediately, PPC (part of GP) is activated to determine
which activities are needed to reach the goal and which possible
team members for the project (2) can be found. For this purpose
DPM requests possible participation from design engineers,
electrical engineers, systems engineers, unit managers, styling
specialists and tool experts. The requests are handled by DPM's
AIM component (3). Each of these agents receives the request
through its own AIM component (4), and considers the request for
possible participation in its own component OPC (5). Each agent's
AIM component returns an answer to the request (6). DPM
receives the agents' responses (in his AIM component) (7). The
replies are forwarded to the PPC component, which continues the
preparation of project commitments in interaction with the possible
participants (iterating steps 3 through 8). The information on the
project activities and the willing participants is sent to GMR (part
of GP). This component is responsible for the creation of the final
recipe. This task involves frequent contact with the willing
participants. Again this contact is handled by the AIM components
of the agents (10,11). The OPCs of the willing participants check
to see if the activities assigned to them fit in their own schedules
(12). Information on the success or failure of their scheduling is
sent by their AIM component (13) to the AIM component of DPM
(14), which forwards it to GMR (15). By iterating steps 10
through 15, GMR creates a final recipe. The resulting recipe
includes the global goal (i.e., aircraft to be designed given global
requirements and specifications) and recipe elements. A recipe
element related to the design of a unit includes the following
information:
- the specific requirements and specifications for the unit to be
designed (based on the initial design of the whole aircraft),
- one unit manager (UM),
- one design engineer (DE),
- one electrical engineer (EE), and
- one systems engineer (SE).
The resulting recipe is sent to each of the unit managers by AIM
(16). The CM component of DPM makes sure that the resulting
recipe will be monitored by its subcomponent MP (16).

After the unit groups have been formed the unit managers
schedule the design process of their unit, following a similar
pattern. For example, the unit manager responsible for the design
of the toilet unit (i.e., toilet basin, counter top, sink and cabinet
combination, et cetera) decides that the design engineer involved
should make an initial design for the electrical engineer and the
systems engineer. To ensure that the electrical engineer and the
systems engineer can start as quickly as possible, the unit manager
initially gives the toilet basin the highest priority compared to the
top counter, the sink and the cabinet combination.

5

time
point

agent agent
component

sub
component

subsub-
component

1. DPM OPC

2. DPM CM GP PPC

3. DPM AIM

4. other AIM

5. other OPC

6. other AIM

7. DPM AIM

8. DPM CM GP PPC

9. DPM CM PG GMR

10. DPM AIM

11. other AIM

12. other OPC

14. DPM AIM

15. DPM CM GP GMR

16. DPM AIM

CM MP

 Table 3 System trace: project creation

5.2 Communication during project execution
The unit manager receives requirements and specifications from the
design project manager. This information is forwarded directly to
the design engineer, the electrical engineer and the systems
engineer. The communication patterns between team members is
depicted in Figure 4.

PET PD

DE

UM

EF SE

Figure 4 Communication patterns between design agents

The communication between team members includes information
such as the position of the unit within the aircraft, the position of
the door, supply lines, et cetera, but also customer requirements
such as the size and number of towels that must fit in a cabinet.
Requirements such as (fire) safety requirements, are not specified
explicitly but are assumed to be known to the managers and
engineers. In addition, the unit manager provides each engineer
with relevant guidelines and planning information (e.g., deadlines
and priorities). Guidelines, such as, "Use aluminum instead of
stainless steel if at all possible", may evolve during the design
process at unit management level. Such guidelines are forwarded
immediately to the engineers - often causing modifications to
existing (partial) designs.

The design engineer first analyses the information on the
position of the unit. The initial contours of the unit and planes
within the unit are identified. This initial sketch is given to the other
engineers. This sketch roughly indicates where electrical, air-
conditioning and water systems can be positioned. The electrical
engineer and the systems engineer start working on a first draft of
their systems, roughly following the priorities provided by the unit
manager.

Expectations of the time involved in manufacturing guide the
design strategy and thus scheduling of sub-tasks. The unit manager
had initially given the toilet basin highest priority. The design
engineer, however, expects the counter-top, sink and cabinet
combination to be more complex. She informs the unit manager of
her intention to work on the counter-top, sink and cabinet
combination first, and the reasons for this decision. One of the

reasons is the fact that the requirements differ considerably from
previous designs, implying that extensive interaction with
suppliers, product specialists and tooling specialists is required.
The unit manager agrees with the argumentation and informs the
other engineers of the change in priority.

The design engineer designs and positions the cabinets, the sink
and the counter top. Different options are explored: properties of
material, appearance, functionality, et cetera, are analysed in
interaction with specialists. An example of the types of interaction
involved is illustrated for the requirement that the overflow in the
sink should not be immediately visible. This requirement
mandates, in our example,
(1) interaction with the purchasing department to determine
whether sinks exist for which the overflow is closer to the user
than to the wall (so that it cannot be seen),
(2) interaction with the product specialist to determine whether and
how a sink can be made to fulfil this requirement (if possible using
standard components),
(3) interaction with the tooling specialist to determine whether
specific tooling is required in the production process.

The design engineer discusses the different options with the
systems engineer (position of the drain is of importance), and the
electrical engineer (the position of the sensor to activate the water
flow is of importance), and proposes a solution. If the unit
manager agrees, the solution is accepted.

A similar pattern of communication is required for the counter
top and the cabinets, in which case the styling expert is consulted
for input on the precise shape of the combination. The process
sketched above is described below in more detail, with a system
trace as shown in Table 5.

Project execution: design scenario
During the design process for the counter top and the cabinets the
component AST of the design engineer makes a partial initial
design (1) which is sent by its AIM component (2) to the unit
manager (UM), the electrical engineer (EE) and the systems
engineer (SE).

The AIM components of the electrical and systems engineer (3)
forward the initial design to their own AST components (4). The
AIM components (5) of these agents then send the initial designs of
their systems to the unit manager and the design engineer. Their
AIM components (6) transfer these designs to the respective AST
components (7). The electrical engineer sends an initial design of
the electrical cable routing, the system design sends an initial
design of all other systems.

The design engineer's AST component positions the electrical
cable routing in her current design and discovers a problem: the
cable routing directly crosses mounting points of the cabinet (7).
Using her AIM component (8), the design engineer informs the
electrical engineer and the unit manager of this problem. The
information arrives in their AIM components (9) and is sent on to
their AST components (10). The AST component of the electrical
engineer solves the problem by re-routing the cable.The solution is
sent by the AIM component (11) to the design engineer and the unit
manager; they receive the solution in their AIM component (12).
With the solution, the AST component of DE can resume its work
(13).

To finalise the design of the counter top, sink and cabinet
combination the AST component of the design engineer needs
more detailed information on switches, light points, sensors, et
cetera, from the electrical engineer, thus a request is sent by the
design engineer's AIM component (14).

The design engineer also needs more detailed information on
pipes and drains (size, mounting specifications, screws, et cetera)
from the systems engineer, again a request is sent by the AIM
component (14). In both cases the unit manager is informed as well
(14). The AIM components of the EE, SE and UM receive the
request (15).

The AST component of EE has to reschedule some of its sub-
processes to provide this information as soon as possible (16).
This is important for the ordering of the necessary materials and
tooling. After rescheduling, the information is sent by EE's AIM to
the design engineer (18).

In the mean time, the AST component of SE (16) is able to
provide the information immediately, SE's AIM component (17)
sends the information to DE. The design engineer receives the
information from EE and SE, and via AIM (19) and AST (20)

6

proceeds to design the toilet basin, requiring interaction with both
the electrical engineer and the systems engineer.

time
point

agent agent
component

time
point

agent agent
component

1. DE AST 11. EE AIM

2. DE AIM 12. DE

UM

AIM

AIM

3. EE

SE

AIM

AIM

13. DE AST

4. EE

SE

AST

AST

14. DE AIM

5. EE

SE

AIM

AIM

15. EE

SE

UM

AIM

AIM

AIM

6. DE

UM

AIM

AIM

16. EE

SE

AST

AST

7. DE

UM

AST

AST

17. SE AIM

8. DE AIM 18. EE AIM

9. UM

EE

AIM

AIM

19. DE AIM

10. EE

UM

AST

AST

20. DE AST

Table 5 System trace: project execution

6 Discussion

Collaborative, concurrent engineering projects are complex. The
coordination of these projects in virtual environments, in particular
the coordination of conflicting (partial) designs, interests, models,
requirements (e.g., new requirements imposed during design), et
cetera, requires extensive knowledge of the design process, of the
available expertise and skills, of dependencies and, in particular, of
the consequences of modification. Recently a number of tools and
services have been designed to support specific aspects of the
coordination process; for example, (Bahler, Dupont and Bowen,
1994; Cutkosky, Engelmore, Fikes, Gruber, Genesereth, Mark,
Tenenbaum and Weber, 1993; Klein, 1995; Petrie, 1994). In this
paper a multi-agent perspective to project coordination is presented.

Multi-agent literature focusses on modelling interaction between
agents, most frequently based on informal models of interaction;
see (Wooldridge and Jennings, 1995). In this paper one of the
models of agent cooperation (Jennings, 1995) has been formally
specified, specialised and instantiated for an example scenario of a
cooperative design project in which interaction is instantiated when
necessary. The generic specifications of the model can be used in
other project coordination situations, instantiated for the specific
domain of application. By formally specifying not only the
knowledge involved, but also the types of interaction and
coordination patterns required during these types of projects, more
detailed insight is acquired in the required type of support (for
example, types of verification and validation).

Acknowledgements
Discussions on the cooperation model with Nick Jennings were
very useful to the authors.

References
Bahler, D., Dupont, C., Bowen, J. (1994). Anaxiomatic approach that

supports negotiated resolution of design conflicts in concurrent engineering.
In: Gero, J.S., Sudweeks, F. (eds.), Artificial Intelligence in Design, Kluwer
Academic Publishers, Dordrecht, pp. 363-379.

Brazier, F.M.T., B. Dunin-Keplicz, N.R. Jennings, J. Treur (1995). Formal
Specification of Multi-Agent Systems: a Real World Case. In: V. Lesser
(ed.), Proc. of the First International Conference on Multi-Agent Systems,
ICMAS-95, MIT Press, pp. 25-32.

Brazier, F.M.T., B. Dunin-Keplicz, N.R. Jennings, J. Treur (1996). Modelling
Distributed Industrial Processes in a Multi-Agent Framework. In: G. O'Hare,
S. Kirns (eds.), Towards the Intelligent Organisation: a Coordination
Perspective, Springer Verlag.

Brazier, F.M.T., C.M. Jonker & J. Treur (1996). Formal specification of a
model for cooperation based on joint intentions. Technical Report, Vrije
Universiteit Amsterdam, Department of Mathematics and Computer Science

Brazier, F.M.T., P.H.G. van Langen, Zs. Ruttkay & J. Treur (1994). On
Formal Specification of Design Tasks. In: Gero, J.S. (ed.), Artificial
Intelligence in Design ’94, Proceedings AID ’94. Kluwer Academic
Publishers, Dordrecht, pp. 535-552.

Brazier, F.M.T. and J. Treur (1994). User centered knowledge-based system
design: a formal modelling approach. In: L. Steels, G. Schreiber and W. Van
de Velde (eds.), A future for knowledge acquisition, Proceedings of the 8th
European Knowledge Acquisition Workshop, EKAW ’94. Springer Verlag,
Lecture Notes in AI 867, pp. 283-300.

Brazier, F.M.T., J. Treur, N.J.E. Wijngaards and M. Willems (1995). Formal
specification of hierarchically (de)composed tasks. In: B.R. Gaines and M.A.
Musen (eds). Proceedings of the 9th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, KAW ’95, 1995, Volume 2, pp.
25/1-25/20. Calgary: SRDG Publications, Department of Computer
Science, University of Calgary.

Brazier, F.M.T., J. Treur, N.J.E. Wijngaards and M. Willems (1996).
Temporal semantics of complex reasoning tasks. In: R. Albrecht, H. Herre
(eds). Proc. of the Int. Workshop on New Trends in Theoretical Computer
Science, Oldenburg Verlag, Munich-Vienna.

Cutkosky, M., Engelmore, R., Fikes, R., Gruber, T., Genesereth, M., Mark,
W., Tenenbaum, J., Weber, J. (1993). PACT: An experiment in integrating
concurrent engineering systems. IEEE Computer 26, Special Issue on
Computer Support for Concurrent Engineering, pp. 28-37.

Dunin-Keplicz, B. and J. Treur (1995). Compositional formal specification of
multi-agent systems. In: (Wooldridge and Jennings, 1995), pp. 102-117

Dunskus, B.V., Grecu, D.L., Brown, D.C. and Berker, I. (1995). Using single
function agents to investigate conflict. AIEDAM 9. Cambridge University
Press, pp. 299-312

Jennings, N.R. (1995). Controlling Cooperative Problem Solving in Industrial
Multi-Agent Systems using Joint Intentions, Artificial Intelligence Journal
74 (2)

Klein, M (1995). Conflict management as part of an integrated exception
handling approach. AIEDAM 9, Cambridge University Press, pp. 259-267.

Langevelde, I.A. van, A.W. Philipsen and J. Treur (1992). Formal
specification of compositional architectures, in B. Neumann (ed.),
Proceedings of the 10th European Conference on Artificial Intelligence,
ECAI'92 , John Wiley & Sons, Chichester, pp. 272-276.

Petrie, C. (1994). Design space navigation as a collaborative aid. In: Gero,
J.S. (ed.), Artificial Intelligence in Design ’94, Proceedings AID ’94.
Kluwer Academic Publishers, Dordrecht, pp. 611-623.

Wooldridge, M., Jennings, N.R. (eds.) (1995), Intelligent Agents, Proc. of the
ECAI'94 Workshop on Agent Theories, Architectures and Languages,
Lecture Notes in AI, vol. 890, Springer Verlag.

